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Percolation as the zero-temperature limit of the dilute Ising 
model 
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$ IBM Thomas J Watson Research Center, Yorktown Heights, NY 10598 USA 
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Abstract. It is shown that, by taking the zero-temperature limit of the annealed dilute bond 
king model, approximate expressions for quantities of interest in the percolation problem 
can be obtained. These are compared with computer simulations for a square lattice and 
shown to be reasonable over the entire concentration range whilst giving incorrect critical 
exponents. 

It is well known that at zero temperature the dilute Ising model becomes a percolation 
problem (see e.g. Essam 1972). This connection has been exploited by taking results for 
the percolation problem mainly computer simulations and series expansions (see e.g. 
Shante and Kirkpatrick 1971), and using them to obtain the properties of the dilute 
Ising model at zero temperature. The most obvious of these is the magnetisation M ( p )  
as a function of the fraction p of occupied bonds, which becomes the probability 
P s ( p )  that a site is part of an infinite cluster. Other correspondences are discussed 
below. 

We note in passing that much more attention (Kasteleyn and Fortuin 1969, Fortuin 
and Kasteleyn 1972, Harris er a1 1975) has been paid to the s + 1 limit of the s-state 
Potts model. A dimensionless temperature t can be defined by p = 1 -exp(-l/r), so 
that as t goes from 0 to CO we go from p = 1 (all bonds occupied) to p = 0 (no bonds 
occupied) in the percolation problem. An approximation to the percolation problem 
can be obtained by doing mean field theory on the Potts model and letting s + 1 
(Stephen 1977). The mean field percolation concentration p c  = 1 -exp(-l/z) = 0.22 
for the square net (2 = 4). This is not very close to the exact answer pc = 0.5 (Essam 
1972). Mean field theory becomes better as the number of neighbours increases. 

Kasteleyn and Fortuin (1969) showed that the analogue of the lattice free energy for 
the percolation problem is the quantity ( -yc(p)) ,  the average number of distinct 
connected clusters per bond for the bond percolation model in which each site has the 
same probability p (or q = 1 - p )  of being present (or absent). This quantity can be 
obtained from the entropy S ( p ,  T) per bond of the dilute bond Ising model at zero 
temperature, where each cluster behaves like a spin f and has an entropy kBIn2 
associated with it: 

( Y c ( P ) )  = s(P, O)/kB In 2. (1) 
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A quantity C ( p ) ,  which is analogous to a specific heat, can then be obtained (Kirk- 
patrick 1976): 

C(P)  = (g  dldq)*(rc(P)). ( 2 )  

We also define for the bond percolation problem the fraction Ps( p )  of sites in the infinite 
cluster and the fraction Pb(p) of bonds in the infinite cluster. It is clear that if the 
magnetisation per site of the dilute bond Ising model is M (  p ,  T ) ,  then 

PAP) = M ( p ,  0). ( 3 )  

These expressions can be used to obtain information about the magnetic problem at 
zero temperature from the percolation problem, which is clearly the simpler of the two. 
However, Thorpe and Beeman (1976), following earlier work of Rapaport (1972) and 
Syozi and Miyazima (1966), have obtained an approximation to the dilute bond Ising 
model, and we shall compare the zero-temperature limit of this annealed bond model 
(QB) with Monte Carlo results for the percolation problem. 

The solution to the dilute quenched bond (QB) Ising model involves an average over 
the logarithm of the partition function that makes the problem intractable. However, it 
is possible to construct a grand canonical ensemble in which the bonds are mobile. This 
leads to the AB model, where, in the thermodynamic limit, the total number of occupied 
bonds becomes fixed, although correlations are introduced between the positions of the 
occupied bonds. These correlations are greatest near the critical point and extremely 
small outside the critical region. The phase diagram is shown in figure 1. Although the 

P 
Figure 1. The phase diagram for the dilute annealed bond king model (AB) on the square 
lattice. The phase boundary is given by exp(2J/kBTc) = ( 2 p  + J2 - 1)/(2p - I), where Tz is 
the solution with p = 1.  

complete QB phase diagram is not known exactly, some portions are. At small q = 1 - p  
the slope is determined by single missing bonds, and for a square lattice 

TJ T: = 1 - 2q(2 - J2)/1n(1+ 42) . . . . (4) 
The AB model also gives this result. Near the critical concentration p c  = %, the QB phase 
boundary has been shown to have the form (Bergstresser 1977) 

exp(-2J/k~T) = A b  -PA ( 5 )  
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and by an argument that is probably rigorous Domany (1978) has shown that A = 
2 In 2 = 1.387. The phase boundary of the AB model also has the form of equation ( 5 )  
with p c  = $ (this comes about because the square lattice is self-dual (Essam 1972)), but 
with A = J2 = 1.414. Thus the phase boundary of the AB model as shown in figure 1 
must be very close to the exact (OB) phase boundary. The critical exponents of the AB 
model are renormalised, so if the subscript ‘d’ refers to the disordered system and the 
unsubscripted exponents refer to the pure system with p = 1, then 

(Yd = -(Y/(l -a) ,  P d  =P/ ( l - a ) ,  Yd = Y/(l-a), (6)  
and exponents that do not involve a temperature derivative like 8 are unchanged, so 

The zero-temperature solution of the AB model is expressed in terms of parameters 
K and e (K), which are the interaction and nearest-neighbour correlation function 
(alaz) of the two-dimensional Ising model (Onsager 1944). The quantity e ( K )  can be 
expressed as an elliptic integral. The concentration p is given by 

that &j 8. 

2p = [l -exp(-2K)](l + e ( K ) ) ,  

Ps( p )  = [ 1 - ~inh-~(2K)]”*. 

(7) 

(8) 
The fraction of bonds in the infinite cluster can also be calculated from (f 1 2 ( a l  + u2))/2, 
where f l2 is the indicaior function (see Thorpe and Beeman 1976) for occupation of the 
bond with spins u1 and u2 at either end. We find that 

and the magnetisation M ( p ,  0) = P s ( p )  by (Yang 1952) 

Pb(p) = [2p/(l + e ( K ) ) p s ( p ) *  (9) 
These results are shown in figure 2. It can be seen that the AB results are always below 
the Monte Carlo results for P s ( p )  and Pb(p), although very close for Pb(p) .  Small 

P 

figure 2. The AB results (full curves) and the Monte Carlo results (triangles) for the 
percolation probabilities P,(p)  and &(p) .  The Monte Carlo calculations were done on 
samples ranging in size from 100 x 100 to 400 X 400 sites, the larger samples being used near 
pc. The inset in the upper left-hand corner shows the ratio &(p) /p, (p) .  
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4 = 1 - p  expansions for the OB model give 

pb (p )=p( l -q6 . .  .)? (10) P,(p,=l-q ...) 

~ , ( ~ ) = 1 - 2 q  4 . . . ,  p b ( p ) = p ( l - 2 q 6 . ,  e ) .  ( loa)  

4 

whereas the AB expressions can be expanded to give 

Thus, although the leading terms have the correct powers, there are discrepancies of a 
factor of two owing to the tendency of the missing bonds to cluster together in the AB 
model. Near p c  the AB result is 

(11) 

leading to an exponent p = &, whereas the Monte Carlo results are consistent with 
0.136=spa0.150. The ratio Pb(p) /Ps (p )  goes to a constant value at p c  which the 
Monte Carlo result gives as 0.562* 0.001, whereas AB gives 1/(1+ 1/42) = 0.586. This 
is consistent with the inequality that can be derived by noting that the total number of 
bonds in an infinite cluster must exceed the total number of sites, so that 

(12) 

The specific heat can be obtained from (1) and (2). However, there is an entropy of 

p - p c  = [(J2- 1)/.lrlpSS(p) ln (2 /~ f (p ) ) ,  

p b (  p /ps( p ) > 2 / 2, 
where z = 4 is the number of nearest neighbours. 

mixing S,,, per bond, 

Smix=kBE-P I n p - ( l - p ) l n ~ l - p ) l ,  (13) 

that must be subtracted from the AB result before using equation (1) to find ( y c ( p ) ) ,  
which is then given by 

fy,(p)) = [ S ( K ) / k B  + 2 ~ K / ( e ~ ~  - 1) - p  In (1 -e-2K) + p  In p + (1 - p )  In( 1 -p)]/ln 2, 
114) 

where S ( K )  is the entropy per bond of the usual Ising model ( p  = 1) and can be obtained 
from Domb (1960). At the critical concentration (14) gives a value for the mean 
number of clusters per bond as 0.056, whereas an exact QB calculation by Temperley 
and Lieb (1977) gives 0,049. Using equations (2) and (141, the specific heat C ( p )  is 
given by 

C ( p )  = (1 - p ) [  In(-) 1-p +--+ln(e2K 1 - 1)-- z(1-p) - dK1 /In 2, i 15) 
P P  1 -e-2K dpJ 

where dK/dp is obtained from equation (7). If the specific heat in the regular Ising 
model ( p  = 1) is divergent, as it is for the square net, then 

which leads to a value of a +  l / ln  2 = 1.6927 compared with a Monte Carlo estimate of 
1-5.  The AB and Monte Carlo results are compared in figure 3. The main discrepancy is 
near pc,  where the Monte Carlo results give a cusp with CY = CY' = -0-6 += 0.1, whereas AB 
gives a cusp with a = CY' = 0 (logarithm). Using a series expansion the result for small 4 
is 

C ( p ) = 2 z q Z + .  . ., !17) 
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whereas AB gives 

C(p)=2zq2/ln2+ ..., (18) 

It is interesting to look at C ( p )  for the QB Bethe lattice with z = 3 (Kirkpatrick 1976) 
with z = 4 for the square net. 

using the generating function of Fisher and Essam (1961). For p < p c  

C(P) = 1 - p ,  (19) 

C ( p )  = q3(p3  + 2 p z  + 7 p  -4)/pS. 

whereas for p > p c  

(20) 

It can be seen from figure 4 that C ( p )  is continuous at pc .  The AB results can be applied 
to the Bethe lattice using the expressions for E(K) and S(K) obtained from the Bethe 
approximation (Domb 1960). This leads to the same result (19) for p < p c  and to a 
parametric representation for p > p c ,  

where the parameter y is related to the effective field used in the Bethe approximation 
solution. Above p c  there is considerable discrepancy between the two results. The AB 
result has a discontinuity A C  = $/ln 2 = 0,9618, and at small 4 the two results behave as 
equations (17) and (18) with z = 3. The reason for the disagreement above pc is that in 
the ordered phase the Bethe approximation does not solve the problem on the Bethe 
lattice, whereas in the disordered phase below pc (corresponding to high temperatures) 
it does (Eggarter 1974). 

In conclusion we have shown that approximate results can be obtained for the 
percolation problem by using the results of the annealed bond Ising model (AB). We 
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Figure 4. The specific heat C ( p )  for the Bethe lattice for z = 3. The full curve is the exact 
result, and the broken curve is based on the Bethe approximation using the transformation 
of Rapaport (1972) and Thorpe and Beeman (1976) for the AB model. Below p c  the two 
results are identical. 

have not been able to obtain expressions for the susceptibility in the percolation 
problem (see Kirkpatrick 1976, equation (3)) using AB, as the susceptibility of the Ising 
model ( p  = 1) is not known over the entire temperature range. 

Solutions can also be generated in higher dimensions using numerical approxima- 
tions for E ( K )  and S ( K ) .  For example, the value of C(pc)  from equation (16) for the 
simple cubic lattice is 4.06 from Monte Carlo estimates (Kirkpatrick 1976) and 5.10 for 
AB using estimates from Syozi and Miyazima (1966) (E, ( (K)  = 0.357 and exp(-2Kc) = 
0.641 in equation (7) give p c  = 0.243, which is close to the Monte Carlo estimate of 
p c  = 0.247 (Essam 1972)). 
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